经过调查发现,某种新产品在投放市场的100天中,前40天,其价格直线上升,(价格是关于时间的一次函数),而后60天,其价格则呈直线下降趋势,现抽取其中4天的价格如下表所示:
时间 |
第4天 |
第32天 |
第60天 |
第90天 |
价格(千元) |
23 |
30 |
22 |
7 |
(Ⅰ)写出价格(
)关于时间
的函数表达式(
表示投入市场的第
天);
(Ⅱ)若销售量(
)与时间
的函数关系是
,求日销售额的最大值,并求第几天销售额最高?
已知函数(
)是奇函数,
有最大值
且.
(1)求函数的解析式;
(2)是否存在直线与
的图象交于P、Q两点,并且使得
、
两点关于点
对称,若存在,求出直线
的方程,若不存在,说明理由.
在中,角
所对的边分别为
,向量
,
.已知
.
(1)若,求角A的大小;
(2)若,求
的取值范围.
已知数列是首项
的等比数列,其前
项和
中
,
,
成
等差数列,
(1)求数列的通项公式;
(2)设,若
,求证:
.
的三个内角
所对的边分别为
,向量
,
,且
.
(1)求的大小;
(2)现在给出下列三个条件:①;②
;③
,
试从中选择两个条件以确定,求出所确定的
的面积.
已知圆:
,
直线:
,且
与圆
相交于
、
两点,点
,且
.
(1)当时,求
的值;
(2)当,求
的取值范围.