(本小题14分)
某市的一家报刊摊点,从报社买进《晚报》的价格是每份0.20元,卖出价是每份0.30元,卖不掉的报纸可以以每份0.05元价格退回报社.在一个月(以30天计)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元?
(本小题12分)
已知函数,
,若函数
在
和
时取得极值
⑴求实数,
的值;
⑵若存在,
,使
成立,求实数
的取值范围.
(本小题13分)
如图,四棱锥的底面为正方形,
平面
,且
,
,
,
分别是线段
,
的中点.
⑴求直线和
所成角的余弦值;
⑵求二面角平面角的余弦值.
(本小题13分)
盒子里有6张大小相同的卡片,上面分别写着1,2,3,4,5,6这6个数.
⑴现从盒子中任取两张卡片,求两张卡片上的数字之和为偶数的概率;
⑵现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶数的卡片则停止抽取,否则继续进行,求抽取次数为多少时其概率小于.
(本小题13分)
在△中,
.
⑴求的值;
⑵若△的面积为
,
,求
的长.
(本小题12分)
已知数列满足:
,
,记
,
为数列
的前
项和.
⑴证明数列为等比数列,并求其通项公式;
⑵若对任意且
,不等式
恒成立,求实数
的取值范围;
⑶令,证明:
.