(本小题14分)
某市的一家报刊摊点,从报社买进《晚报》的价格是每份0.20元,卖出价是每份0.30元,卖不掉的报纸可以以每份0.05元价格退回报社.在一个月(以30天计)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元?
如图,已知椭圆的长轴为AB,过点B的直线
与
轴垂直,椭圆的离心率,F为椭圆的左焦点,且
(1)求此椭圆的标准方程;
(2)设P是此椭圆上异于A,B的任意一点, 轴,H为垂足,延长HP到点Q,使得HP=PQ,连接AQ并延长交直线
于点
,
为
的中点,判定直线
与以
为直径的圆O位置关系。
某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为
亿元。该市决定制定生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少
亿元,至多
亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.
若,
,请你分析能否采用函数模型y=
作为生态环境改造投资方案.
在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.
(1)求证:BD⊥PC;
(2)设E为PC的中点,点F在线段AB上,若直线EF∥平面PAD,求AF的长;
(3)求二面角A﹣PC﹣B的余弦值.
已知a,b,c分别是的三个内角A,B,C的对边,
(1)求A的大小;
(2)当时,求
的取值范围.
已知等差数列中,公差
,其前
项和为
,且满足:
,
.
(1)求数列的通项公式;
(2)令,
,求
的最小值.