椭圆G:的两个焦点、,M是椭圆上一点,且满足. (1)求离心率的取值范围;(2)当离心率取得最小值时,点到椭圆上的点的最远距离为;①求此时椭圆G的方程;②设斜率为()的直线与椭圆G相交于不同的两点A、B,Q为AB的中点,问:A、B两点能否关于过点、Q的直线对称?若能,求出的取值范围;若不能,请说明理由.
在如图所示的圆锥中,是圆锥的高,是底面圆的直径,点是弧的中点,是线段的中点,是线段上一点,且,. (1)若为的中点,试在上确定一点,使得面,并说明理由; (2)若,求直线与面所成角的正弦值.
已知数列满足. (1)求证:为等比数列,并求出的通项公式; (2)若,求的前n项和.
已知函数. (1)若曲线在点处的切线方程为,求的值; (2)若,且在上单调递增,求实数的取值范围.
已知. (1)求的值; (2)若,求的值域.
函数. (1)若,求函数的定义域; (2)设,当实数时,证明:.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号