椭圆G:的两个焦点
、
,M是椭圆上一点,且满足
.
(1)求离心率的取值范围;
(2)当离心率取得最小值时,点
到椭圆上的点的最远距离为
;
①求此时椭圆G的方程;
②设斜率为(
)的直线
与椭圆G相交于不同的两点A、B,Q为AB的中点,问:A、B两点能否关于过点
、Q的直线对称?若能,求出
的取值范围;若不能,请说明理由.
已知函数(其中0≤
≤
)的图象与y轴交于点
,
(I)求的解析式;
(II)如图,设P是图象上的最高点,M、N是图象与x轴的交点,求与
的夹角的余弦值。
如图,已知椭圆(a>b>0)的离心率
,过点A(0,-b)和B(a,0)的直线与原点的距离为
.
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
抛物线的顶点在原点,它的准线过双曲线
的一个焦点,并于双曲线的实轴垂直,已知抛物线与双曲线的交点为
,求抛物线的方程和双曲线的方程。
F1,F2为双曲线的焦点,过
作垂直于
轴的直线交双曲线与点P且∠P F1F2=300,求双曲线的渐近线方程.
椭圆短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆长轴端点的最短距离为,求此椭圆的标准方程。