(本小题满分12分) 已知各项均为正数的数列满足:
(
),且
.
(Ⅰ)求数列的通项公式;
(Ⅱ)证明:
(
)
(Ⅲ)若,令
,设数列
的前
项和为
(
),试比较
与
的大小.
已知椭圆的两个焦点分别为
,且
,点
在椭圆上,且
的周长为6.
(I)求椭圆的方程;
(II)若点的坐标为
,不过原点
的直线与椭圆
相交于
两点,设线段
的中点为
,点
到直线的距离为
,且
三点共线.求
的最大值.
已知函数,其中
为正实数,
.
(I)若是
的一个极值点,求
的值;
(II)求的单调区间.
为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中
随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是:.
(I)求图中的值并根据频率分布直方图估计这500名志愿者中年龄在
岁的人数;
(II)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为,求
的分布列及数学期望.
如图,在长方体中,
,
为
的中点,
为
的中点.
(I)求证:平面
;
(II)求证:平面
;
(III)若二面角的大小为
,求
的长.
已知函数.
(I)求的值;
(II)求函数的最小正周期及单调递减区间.