(本题满分12分)
在一个不透明的盒子中,放有标号分别为1,2,3的三个大小相同的小球,现从这个盒子中,有放回地先后取得两个小球,其标号分别为,记
.
(1)求随机变量的最大值,并求事件“
取得最大值”的概率;
(2)求随机变量的分布列和数学期望.
在等比数列( n∈N*)中a1>1,公比q>0,设bn=log2an,且b1+b3+b5=6,b1·b3·b5=0.
(1)求证:数列是等差数列;
(2)求前n项和Sn及
通项an.
如图. 直三棱柱ABC —A1B1C1中,A1B1= A1C1,点D、E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.
求证:(1)平面ADE⊥平面BCC1B1
(2)直线A1F∥平面ADE.
某中学在运动会期间举行定点投篮比赛,规定每人投篮4次,投中一球得2分,没有投中得0分,假设每次投篮投中与否是相互独立的,已知小明每次投篮投中的概率都是.
(1)求小明在投篮过程中直到第三次才投中的概率;
(2)求小明在4次投篮后的总得分的分布列和期望.
已知函数
(1)求的最小正周期;
(2)当时,若
,求
的值.
各项均不为零的数列的前
项和为
,且
,
.
(1)求数列的通项公式
;
(2)若,设
,若
对
恒成立,求实数
的取值范围.