(本小题满分12分)由于当前学生课业负担较重,造成青少年视力普遍下降,现从湖口中学随机抽取16名学生,经校医用对数视力表检查得到每
个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:

(1)指出这组数据的众数和中位数;
(2)若视力测试结果不低于5.0,则称为“good sight”,求校医从这16人中随机选取3人,至多有1人是“good sight”的概率;
(3)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记
表示抽到“good sight”学生的人数,求
的分布列及数学期望.
在等腰梯形ABCD中,
,
,
,N是BC的中点.如图所示,将梯形ABCD绕AB逆时针旋转
,得到梯形
.
(1)求证:
平面
;
(2)求证:
平面
;
已知数列
的前
项和为
,且满足:
,
N*,
.
(1)求数列
的通项公式;
(2)若存在
N*,使得
,
,
成等差数列,试判断:对于任意的
N*,且
,
,
,
是否成等差数列,并证明你的结论.
设函数
(1)求
的单调递增区间. (2)已知函数
的图象在点A(
)处,切线斜率为
,求: 
已知函数f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函数f(x)的单调区间;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2
(f′(x)是f(x)的导数)在区间(t,3)上总不是单调函数,求m的取值范围;
(3)求证:
×…×
<
(n≥2,n∈N*).
已知抛物线C:y2=2px(p>0)过点A(1,-2).
(1)求抛物线C的方程,并求其准线方程;
(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于
?若存在,求出直线l的方程;若不存在,说明理由.