(本小题满分分)
已知椭圆的中心在坐标原点
,两个焦点分别为
、
,一个顶点为
.
(1)求椭圆的标准方程;
(2)对于轴上的点
,椭圆
上存在点
,使得
,求
的取值范围.
已知数列满足:
,其中
为
的前n项和.
(1)求的通项公式;
(2)若数列满足
,求
的前n项和
.
已知条件p: 条件q:
若
的充分但不必要条件,求实数
的取值范围.
已知是公差不为零的等差数列,
,且
成等比数列.
(1)求数列的通项;
(2)记,求数列
的前
项和
(本小题满分12分)
已知椭圆,椭圆
以
的长轴为短轴,且与
有相同的离心率.
(1)求椭圆的方程;
(2)设O为坐标原点,点A,B分别在椭圆和
上,
,求直线
的方程.
.(本小题满分12分)
已知函数,
是常数)在x=e处的切线方程为
,
既是函数
的零点,又是它的极值点.
(1)求常数a,b,c的值;
(2)若函数在区间(1,3)内不是单调函数,求实数m的取值范围;
(3)求函数的单调递减区间,并证明: