(本小题满分12分)
已知直线与椭圆
交于两点
,椭圆上的点到下焦点距离的最大值、最小值分别为
,向量
,O为坐标原点。
(Ⅰ)求椭圆的方程;
(Ⅱ)判断的面积是否为定值,如果是,请给予证明;如果不是,请说明理由。
口袋中有n(n∈N*)个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X,若P(X=2)=求:
(1)n的值;
(2)X的概率分布与数学期望.
设f(x)=x2x+13,实数a满足|xa|<1,求证:|f(x)f(a)|<2(|a|+1).
在直角坐标系中,曲线
的参数方程为
(
为参数),若以直角坐标系xoy的原点为极点,OX为极轴,且长度单位相同,建立极坐标系,直线l的极坐标方程为 ρsin(θ+)="0," 求与直线l垂直且与曲线C相切的直线m的极坐标方程.
已知矩阵M=,N=
.
(1)求矩阵MN;
(2)若点P在矩阵MN对应的变换作用下得到Q(0,1),求点P的坐标.
如图,设AB为⊙O的任一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD,求证:
(1)l是⊙O的切线;
(2)PB平分∠ABD.