某校要用三辆汽车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为
;汽车走公路②堵车的概率为
,不堵车的概率为
.若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响
. (Ⅰ)若三辆汽车中恰有一辆汽车被堵
的概率为
,求走公路②堵车的概率;
(Ⅱ)在(Ⅰ)的条件下,求三辆汽车中被堵车辆的个数的分布列和数学期望。
如图,椭圆C:的顶点为A1,A2,B1,B2,焦点为F1,F2,,
=
,
(Ⅰ)求椭圆C的方程;
(Ⅱ)设n是过原点的直线,l是与n垂直相交于P点、与椭圆相交于A,B两点的直线,,是否存在上述直线l使成立?若存在,求出直线l的方程;若不存在,请说明理由。
(本小题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD是矩形PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)求三棱锥E—ABC的体积V.
在二项式的展开式中,前三项系数的绝对值成等差数列
(1)求展开式的第四项;
(2)求展开式的常数项;
(3)求展开式中各项的系数和.
如图,圆柱内有一个三棱柱
,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径。
(Ⅰ)证明:平面平面
;
(Ⅱ)设AB=,在圆柱
内随机选取一点,记该点取自于三棱柱
内的概率为
。
(i)当点C在圆周上运动时,求的最大值;
(ii)记平面与平面
所成的角为
,当
取最大值时,求
的值。
设是不等式
的解集,整数
。
(1)记使得“成立的有序数组
”为事件A,试列举A包含的基本事件;
(2)设,求
的分布列及其数学期望
。