如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,,且AC=BC.
(1)求证:平面EBC;
(2求二面角的大小.
设在
上的最大值为3
(Ⅰ)求的单调递增区间;
(Ⅱ)在中,内角
的对边分别为
,且
,
,求
及
的面积.
(本小题满分14分)已知函数(
).
(1)讨论的单调性;
(2)若对任意
恒成立,求实数
的取值范围(
为自然常数);
(3)求证(
,
).
(本小题满分13分)已知椭圆(
)的离心率为
,
是椭圆的焦点,点
,直线
的斜率为
,
为坐标原点.
(1)求椭圆的方程;
(2)设过点的直线与
相交于
、
两点,当
的面积最大时,求
的方程.
(本小题满分12分)已知三棱柱中,侧棱垂直于底面,
,
,
,
,点
在
上.
(1)若是
中点,求证:
平面
;
(2)当时,求二面角
的余弦值.
(本小题满分12分)已知正项等比数列中,
,且
成等差数列.
(1)求数列的通项公式;
(2)设,求数列
的前n项和
.