直线与抛物线
(p
0)交于A、B
两点,且
(O为坐标原点),求证:
(1)A、B两点的横坐标之积,纵坐标之积都是常数;
(2)直线AB经过x轴上一个定点.
(本小题满分14分)
设数列{an}的前n项和为Sn,已知a1=1,且an+2SnSn-1=0(n≥2),
(1)求数列{Sn}的通项公式;
(2)设Sn=,bn=f(
)+1.记Pn=S1S2+S2S3+…+SnSn+1,Tn=b1b2+b2b3+…+bnbn+1,试求Tn,并证明Pn<
.
(本题满分14分)
在中,角A、B、C所对的边分别为a,
b,c,,且
(1)求的值;
(2)若,求bc的最大值.
(本小题满分15分)
在平面直角坐标系中,已知点
,过点
作抛物线
的切线,其切点分别为
、
(其中
).
(1)求与
的值;
(2)若以点为圆心的圆
与直线
相切,求圆
的面积;
(3)过原点
作圆
的两条互相垂直的弦
,求四边形
面积的最大值.
(本小题满分15分) 已知函数,
,其中
为实数.
(1)设为常数,求函数
在区间
上的最小值;
(2)若对一切
,不等式
恒成立,求实数
的取值范围.
(本小题满分14分)如图,在一个由矩形与正三角形
组合而成的平面图形中,
现将正三角形
沿
折成四棱锥
,使
在平面
内的射影恰好在边
上.
(1)求证:平面⊥平面
;
(2)求直线与平面
所成角的正弦值.