.(本小题满分15分)已知函数是定义在
上的奇函数,
当时,
.
(Ⅰ)求当时,函数
的表达式;
(Ⅱ)求满足的
的取值范围;
(Ⅲ)已知对于任意的,不等式
恒成立,求证:函数
的图象与直线
没有交点.
(本小题满分15分)若函数在定义域内存在区间
,满足
在
上的值域为
,则称这样的函数
为“优美函数”.
(Ⅰ)判断函数是否为“优美函数”?若是,求出
;若不是,说明理由;
(Ⅱ)若函数为“优美函数”,求实数
的取值范围.
.(本小题满分14分)已知集合和
. 设关于x的二次函数
.
(Ⅰ)若时,从集合
取一个数作为
的值,求方程
有解的概率;
(Ⅱ)若从集合和
中各取一个数作为
和
的值,求函数
在区间
上是增函数的概率.
(本小题满分14分)
设全集,已知集合
.
(Ⅰ)求;(Ⅱ)记集合
,已知
,
若,求实数
的取值范围.
已知函数,
,其中
,设
.
(Ⅰ) 判断的奇偶性,并说明理由;
(Ⅱ)当时,判断并证明函数
的单调性;
(Ⅲ) 若,且对于区间[3,4]上的每一个x的值,不等式
恒成立,求实数
的取值范围.