设数列的前n项和为
,且
,其中p是不为零的常数.
(1)证明:数列是等比数列;
(2)当p=3时,若数列满足
,
,求数列
的通项公式.
设数列的前
项和为
,点
在直线
上,
.(1)证明数列
为等比数列,并求出其通项;(2)设
,记
,求数列
的前
和
.
在正方体中,棱长为2,
是棱
上中点,
是棱
中点,(1)求证:
面
;(2)求三棱锥
的体积.
为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如下表所示:
(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
组别 |
候车时间 |
人数 |
一 |
![]() |
2 |
二 |
![]() |
6 |
三 |
![]() |
4 |
四 |
![]() |
2 |
五 |
![]() |
1 |
已知函数.(1)求函数
的最小正周期和最小值;(2)若
,
,求
的值.
已知二次函数,且不等式
的解集为
.
(1)方程有两个相等的实根,求
的解析式;
(2)的最小值不大于
,求实数
的取值范围;
(3)如何取值时,函数
存在零点,并求出零点.