已知椭圆的中心为坐标原点,短轴长为2,一条准线方程为l:.
⑴ 求椭圆的标准方程;
⑵ 设O为坐标原点,F是椭圆的右焦点,点M是直线l上的动点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.
圆
的切线与
轴正半轴,
轴正半轴围成一个三角形,当该三角形面积最小时,切点为
(如图),双曲线
过点
且离心率为
.
(1)求
的方程;
(2)椭圆
过点P且与
有相同的焦点,直线
过
的右焦点且与
交于
两点,若以线段
为直径的圆心过点
,求
的方程.
如图,
和
所在平面互相垂直,且
,
,
分别为
的中点.
(1)求证:
;
(2)求二面角
的正弦值.
一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;
(2)用
表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望
及方差
.
在
中,内角
的对边
,且
,已知
,求:
(1)
和
的值;
(2)
的值.
已知常数
,函数
.
(1)讨论
在区间
上的单调性;
(2)若
存在两个极值点
,且
,求
的取值范围.