((本小题满分12分)
已知点,一动圆过点
且与圆
内切.
(1)求动圆圆心的轨迹的方程;
(2)设点,点
为曲线
上
任一点,求点
到点
距离的最大值
;
(3)在的条件下,设△
的面积为
(
是坐标原点,
是曲线
上横坐标为
的点),以
为边长的正方形的面积为
.若正数
使得
恒成立,问
是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.
(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球,现从中同时取出3个球.
(1)求恰有两个黑球的概率;
(2)记取出红球的个数为随机变量,求
的分布列和数学期望
.
(本小题满分12分)设的内角
,
,
所对的边分别为
,
,
,且
.
(1)求角的大小;
(2)若,求
的周长
的取值范围.
已知函数.
(1)当时,
与
在定义域上单调性相反,求
的最小值。
(2)当时,求证:存在
,使
有三个不同的实数解
,且对任意
且
都有
.
(本小题满分13分)已知抛物线C的顶点为O(0,0),焦点为F(0,1).
(1)求抛物线C的方程;
(2)过点F作直线交抛物线C于A,B两点.若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值.
(本小题满分13分)已知长方体,点
为
的中点.
(1)求证:面
;
(2)若,试问在线段
上是否存在点
使得
,若存在求出
,若不存在,说明理由.