(本小题满分12分)设的内角
,
,
所对的边分别为
,
,
,且
.
(1)求角的大小;
(2)若,求
的周长
的取值范围.
如图,四棱锥的底面是正方形,
⊥平面
,
(1)求证:;
(2)求二面角的大小.
已知a∈R,设关于x的不等式|2x﹣a|+|x+3|≥2x+4的解集为A.
(1)若a=1,求A;
(2)若A=R,求a的取值范围.
已知曲线C1:,(α为参数),C2:
,(θ为参数)
(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C1上的点P对应的参数为α=,Q为C2上的动点,求PQ中点M到直线C3:
,(t为参数)距离的最小值及此时Q点坐标.
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.
(1)求证:DE是⊙O的切线.
(2)若,求
的值.
已知函数f(x)=x3+ax2﹣a2x+2,a∈R.
(1)若a<0时,试求函数y=f(x)的单调递减区间;
(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B 两点的横坐标之和小于4;
(3)如果对于一切x1、x2、x3∈[0,1],总存在以f(x1)、f(x2)、f(x3)为三边长的三角形,试求正实数a的取值范围.