(
已知函数
(常数
)的图像过点
、
两点.
(1)求
的解析式;
(2)若函数
的图像与函数
的图像关于直线
对称,若不等式
恒成立,求实数
的取值范围;
(3)若
是函数
图像上的点列,
是
正半轴上的点列,
为坐标原点,
是一系列正三角形,记它们的边长是
,探求数列
的通项公式,并说明理由.
已知函数 .
(1)设 是 的极值点.求 ,并求 的单调区间;
(2)证明:当 时, .
设抛物线 ,点 , ,过点 的直线 与 交于 , 两点.
(1)当 与 轴垂直时,求直线 的方程;
(2)证明: .
某家庭记录了未使用节水龙头 天的日用水量数据(单位: )和使用了节水龙头 天的日用水量数据,得到频数分布表如下:
未使用节水龙头 天的日用水量频数分布表
|
日用水量 |
|
|
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
|
使用了节水龙头 天的日用水量频数分布表
|
日用水量 |
|
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
(1)在答题卡上作出使用了节水龙头 天的日用水量数据的频率分布直方图:

(2)估计该家庭使用节水龙头后,日用水量小于 的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 天计算,同一组中的数据以这组数据所在区间中点的值作代表.)
如图,在平行四边形
中,
,
,以
为折痕将△
折起,使点
到达点
的位置,且
.
(1)证明:平面 平面 ;
(2)
为线段
上一点,
为线段
上一点,且
,求三棱锥
的体积.

已知数列 满足 , ,设 .
(1)求 ;
(2)判断数列 是否为等比数列,并说明理由;
(3)求 的通项公式.