某家庭记录了未使用节水龙头 天的日用水量数据(单位: )和使用了节水龙头 天的日用水量数据,得到频数分布表如下:
未使用节水龙头 天的日用水量频数分布表
日用水量 |
|
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
|
使用了节水龙头 天的日用水量频数分布表
日用水量 |
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
(1)在答题卡上作出使用了节水龙头 天的日用水量数据的频率分布直方图:
(2)估计该家庭使用节水龙头后,日用水量小于 的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 天计算,同一组中的数据以这组数据所在区间中点的值作代表.)
(本小题满分10分)命题:关于
的不等式
,对一切
恒成立,命题
:函数
是增函数,若
为真,
为假,求实数
的取值范围.
已知函数,(
).
(Ⅰ)已知函数的零点至少有一个在原点右侧,求实数
的范围.
(Ⅱ)记函数的图象为曲线
.设点
,
是曲线
上的不同两点.如果在曲线
上存在点
,使得:①
;②曲线
在点
处的切线平行于直线
,则称函数
存在“中值相依切线”.
试问:函数(
且
)是否存在“中值相依切线”,请说明理由.
设集合W是满足下列两个条件的无穷数列{an}的集合:①, ②
.其中
,
是与
无关的常数.
(Ⅰ)若{}是等差数列,
是其前
项的和,
,
,证明:
;
(Ⅱ)设数列{}的通项为
,且
,求
的取值范围;
(Ⅲ)设数列{}的各项均为正整数,且
.证明
.
一动圆与圆外切,与圆
内切.
(I)求动圆圆心M的轨迹方程.(II)试探究圆心M的轨迹上是否存在点,使直线
与
的斜率
?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标)
如图4,已知平面是圆柱的轴截面(经过圆柱的轴的截面),BC是圆柱底面的直径,O为底面圆心,E为母线
的中点,已知
(I))求证:⊥平面
;
(II)求二面角的余弦值.
(Ⅲ)求三棱锥的体积.