(本小题满分12分)如图,在四棱锥中,底面
四边长为1的菱形,
,
,
,
为
的中点,
为
的中点
(Ⅰ)证明:直线;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离。
如图, 平面平面
,
是以
为斜边的等腰直角三角形,
分别为
,
,
的中点,
,
.
(1) 设是
的中点, 证明:
平面
;
(2) 证明:在内存在一点
, 使
平面
, 并求点
到
,
的距离.
已知数列为等比数列, 其前
项和为
, 已知
, 且对于任意的
有
,
,
成等差;求数列
的通项公式;
如图, 已知单位圆上有四点, 分别设
的面积为
.
(1)用表示
;
(2)求的最大值及取最大值时
的值.
下图是某游戏中使用的材质均匀的圆形转盘,其中Ⅰ,Ⅱ,Ⅲ,Ⅳ部分的面积各占转盘面积的,
,
,
.游戏规则如下:
① 当指针指到Ⅰ,Ⅱ, Ⅲ,Ⅳ部分时,分别获得积分100分,40分,10分,0分;
② (ⅰ)若参加该游戏转一次转盘获得的积分不是40分,则按①获得相应的积分,游戏结束;
(ⅱ)若参加该游戏转一次获得的积分是40分,则用抛一枚质地均匀的硬币的方法来决定是否继续游戏.正面向上时,游戏结束;反面向上时,再转一次转盘,若再转一次的积分不高于40分,则最终积分为0分,否则最终积分为100分,游戏结束.
设某人参加该游戏一次所获积分为.
(1)求的概率;
(2)求的概率分布及数学期望.
设且
,证明:
.