(本小题满分13分)
如图,已知四棱锥P-ABCD的底面是菱形,∠BCD=60°,点E是BC边的中点,AC与DE交于点O,PO⊥平面ABCD.
(Ⅰ)求证:PD⊥BC;
(Ⅱ)若AB=6,PC=6,求二面角P-AD-C的大小;
(Ⅲ)在(Ⅱ)的条件下,求异面直线PB与DE所成角的余弦值.
(12分)已知函数f(x)=(x≠a,a为非零常数).
(1)解不等式f(x)<x;
(2)设x>a时,f(x)的最小值为6,求a的值。
(12分)设命题p:(4x-3)2≤1;命题q:x2-(2a+1)x+a(a+1)≤0,若的必要不充分条件,求实数a的取值范围.
(12分)为了提高产品的年产量,某企业拟在2010年进行技术改革。经调查测算,产品当年的产量x万件与投入技术改革费用m万元(m≥0)满足x=3-(k为常数).如果不搞技术改革,则该产品当年的产量只能是1万件.已知2010年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元.由于市场行情较好,厂家生产的产品均能销售出去。厂家将每件产品的销售价格定为每件产品生产成本的1.5倍(生产成本包括固定投入和再投入两部分资金).
(1)将2010年该产品的利润y万元(利润=销售金额-生产成本-技术改革费用)表示为技术改革费用m万元的函数;
(2)该企业2010年的技术改革费用投入多少万元时,厂家的利润最大?
(12分)设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0}.
(1)若A∩B={2},求实数a的值;
(2)若A∪B=A,求实数a的取值范围.
设a,b均为正数,且a≠b,求证:a3+b3>a2b+ab2.