((本小题满分13分)
某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为
平方米.
(1)分别写出用表示
和
的函数关系式(写出函数定义域);
(2)怎样设计能使取得最大值,最大值为多少?
设全集为,集合
,
.
(1)求如图阴影部分表示的集合;
(2)已知,若
,求实数
的取值范围.
已知点在椭圆
:
上,以
为圆心的圆与
轴相切于椭圆的右焦点
,且
,其中
为坐标原点.
(1)求椭圆的方程;
(2)已知点,设
是椭圆
上的一点,过
、
两点的直线
交
轴于点
,若
, 求直线
的方程;
(3)作直线与椭圆
:
交于不同的两点
,
,其中
点的坐标为
,若点
是线段
垂直平分线上一点,且满足
,求实数
的值.
已知函数
(1)求函数的极值;
(2)设函数若函数
在
上恰有两个不同零点,求实数
的取值范围.
在数列中,其前
项和为
,满足
.
(1)求数列的通项公式;
(2)设,求数列
的前
项和
.
如图,四棱锥中,
面
,
、
分别为
、
的中点,
.
(1)证明:∥面
;
(2)证明: