(本小题满分12分)
如图,在四棱锥P-ABCD中,底面为正文形,PA平面ABCD,且PA=AD,E为棱PC上的一点,PD
平面ABE
(I)求证:E为PC的中点
(II)若N为CD中点,M为AB上的动点,当直线MN与平面ABE所成的角最大时,求二面角C-EM—N的大小
(本小题满分12分)点A、B分别是椭圆长轴的左、右端点,点F是
椭圆的右焦点,点P在椭圆上,且位于轴上方,
.
(1)求点P的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于
,求椭圆上的点到点M的距离
的最小值.
(本小题满分12分)点P到M(-1,0)、N(1,0)的距离之差为2m,到x轴、y轴的距离之比为2.求m的取值范围.
(本小题满分10分)P是椭圆上的点,
是椭圆的左右焦点,设
.求
的最大值与最小值的差.
(本小题满分12分)平面上有两点A(-1,0),B(1,0),P为圆上的一点,试求
的最大值与最小值,并求相应的P点坐标.
(本小题满分12分)已知⊙C:x2+y2-2x-2y+1=0,直线l与⊙C相切且分别交x轴、y轴正向于A、B两点,O为坐标原点,且=a,
=b(a>2,b>2).
(Ⅰ)求线段AB中点的轨迹方程.
(Ⅱ)求△ABC面积的极小值.