已知定点,B是圆
(C为圆心)上的动点,AB的垂直平分线与BC交于点E.
(1)求动点E的轨迹方程;
(2)设直线与E的轨迹交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:
OPQ面积的最大值及此时直线
的方程.
设是函数
的图象上两点,且
,已知点
的横坐标为
。
(1)求证:点的纵坐标是定值;
(2)定义,其中
且
,
①求的值;
②设时,
,若对于任意
,不等式
恒成立,试求实数
的取值。
已知函数。
(1)若,求函数
在
上的最小值;
(2)若函数在
上存在单调递增区间,试求实数
的取值范围。
已知,命题
:对任意
,不等式
恒成立;命题
:存在
,使不等式
成立.
(1)若为真命题,求
的取值范围;
(2)若为假,
为真,求
的取值范围。
已知数列的相邻两项
、
是关于
的方程
的两根,且
。
(1)求证:数列是等比数列;
(2)求数列的前
项的
和及数列
的通项公式。
已知向量,记
。
(1)若,求
的值;
(2)中,角
、
、
的对边分别为
、
、
,且满足
,
,
,试求
的面积。