( (本小题满分13分) 已知椭圆+=1(a>b>0)的一个焦点坐标为(,0),短轴一顶点与两焦点连线夹角为120°. (1)求椭圆的方程; (2)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-a,0),点Q(0,m)在线段AB的垂直平分线上且·≤4,求m的取值范围.
如图,在四边形中,垂直平分,且,现将四边形沿折成直二面角,求: (1)求二面角的正弦值; (2)求三棱锥的体积。
如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由。
如图,ABCD是边长为2的正方形,O是正方形的中心,PO底面ABCD,PO=,E是PC的中点。 求证:(1)PA∥平面BDE;(2)直线PA与平面PBD所成的角.
(本题满分8分) 求经过直线L1:3x + 4y – 5 = 0与直线L2:2x – 3y + 8 = 0的交点M,且与直线2x + y + 5 = 0平行的直线方程。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号