游客
题文

低碳发展是今年深圳市政府工作报告提出的发展理念.近期,某区与某技术支持单位合作,组织策划了该区“低碳先锋行动”,开展低碳测量和排行活动.根据调查数据制作了频数分布直方图和扇形统计图,图6中从左到右各长方形的高度之比为2:8:9:7:3:1.

(1)已知碳排放值5≤x<7(千克/平方米·月)的单位有16个,则此次行动调查__个单位;
(2)在图7中,碳排放值5≤x<7(千克/平方米·月)部分的圆心角为________度;
(3)小明把图6中碳排放值1≤x<2的都看成1.5,碳排放值2≤x<3的都看成2.5,以此类推,若每个被检单位的建筑面积均为10000平方米,则按小明的办法,可估算碳排放值x≥4(千克/平方米·月)的被检单位一个月的碳排放总值约为________________吨.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

计算或化简:(本小题共5小题,第(1)3分其余每小题4分,共19分)
(1)
(2)(3)
(4);(5)÷.

如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D.

(1)求该抛物线的解析式与顶点D的坐标;
(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?
(3)探究轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,直接写出点P的坐标;若不存在,请说明理由.

某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:
(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月可获得最大利润?(不需求出利润的最大值)
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)

已知是⊙的直径,是⊙的切线,是切点,与⊙交于点.

(1)如图①,若,求的长(结果保留根号);
(2)如图②,若的中点,求证:直线是⊙的切线.

(1)用配方法把二次函数化为顶点式,并在直角坐标系中画出它的大致图象().
(2)若是函数图象上的两点,且,请比较的大小关系.(直接写结果)
(3)把方程的根在函数的图象上表示出来.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号