如图,在四棱锥中,底面
是菱形,且
.
(1)求证:;
(2)若平面与平面
的交线为
,求证:
.
已知的内角
的对边分别为
,
.
(1)若,
,求
的值;
(2)若,求
的值.
已知函数在
时取得极小值.
(1)求实数的值;
(2)是否存在区间,使得
在该区间上的值域为
?若存在,求出
的值;若不存在,说明理由.
设等比数列的首项为
公比为
为正整数),且满足
是
与
的等差中项;数列
满足
(1)求数列的通项公式;
(2)试确定的值,使得数列
为等差数列.
如图,在平面直角坐标系中,
分别是椭圆
的左、右焦点,顶点
的坐标为
,连结
并延长交椭圆于点A,过点A作
轴的垂线交椭圆于另一点C,连结
.
(1)若点C的坐标为,且
,求椭圆的方程;
(2)若求椭圆离心率e的值.