(本小题满分15分)
在等比数列{an}中,首项为,公比为
,
表示其前n项和.
(I)记=A,
= B,
= C,证明A,B,C成等比数列;
(II)若,
,记数列
的前n项和为
,当n取何值时,
有最小值.
数列中,
,
,
.
(Ⅰ)证明:数列是等比数列,并求
;
(Ⅱ)求数列的前
项和
.
如图,在四棱锥中,
平面
,
,
,
.
(Ⅰ)证明:;
(Ⅱ)求与平面
所成角的大小.
某项试验在甲、乙两地各自独立地试验两次,已知在甲、乙两地每次试验成功的概率依次为、
;不成功的概率依次为
、
.
(Ⅰ)求以上的四次试验中,至少有一次试验成功的概率;
(Ⅱ)在以上的四次试验中,试验成功的次数为,求
的分布列,并计算
.
在中,角
、
、
所对的边依次为
、
、
,且
.
(Ⅰ)求的值;
(Ⅱ)当的面积为
,且
时,求
、
、
.
已知函数=
,
=alnx,a
R。
(1) 若曲线y=与曲线y=
相交,且在交点处有相同的切线,求a的值及该切线的方程;
(2)设函数h(x)= ,当h(x)存在最小之时,求其最小值
的解析式;
(3)对(2)中的,证明:当a
(0,+
)时,
1.