游客
题文

(本小题满分12分)
已知三棱柱,底面三角形为正三角形,侧棱底面的中点,中点.
(Ⅰ) 求证:直线平面
(Ⅱ)求平面和平面所成的锐二面角的余弦值.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,四棱锥的底面是正方形,⊥底面,点在棱上.

(1)求证:平面⊥平面
(2)当的中点时,求与平面所成角的正弦值.

一家化妆品公司于今年三八节期间在某社区举行了为期三天的“健康使用化妆品知识讲座”.每位社区居民可以在这三天中的任意一天参加任何一个讨论,也可以放弃任何一个讲座(规定:各个讲座达到预先设定的人数时称为满座).统计数据表明,各个讲座各天满座的概率如下表:


洗发水讲座
洗面奶讲座
护肤霜讲座
活颜营养讲座
面膜使用讲座
3月8日





3月9日





3月10日





(1)求面膜使用讲座三天都不满座的概率;
(2)设3月9日各个讲座满座的数目为,求随机变量的分布列和数学期望.

已知△中,角成等差数列,且
(1)求角
(2)设数列满足,前项为和,若,求的值.

已知函数.(1)求函数的单调区间;
(2)设函数.若至少存在一个,使得成立,求实数的取值范围.

已知椭圆的中心在坐标原点,两个焦点分别为,点在椭圆上,过点的直线与抛物线交于两点,抛物线在点处的切线分别为,且交于点.
(1) 求椭圆的方程;
(2) 是否存在满足的点? 若存在,指出这样的点有几个(不必求出点的坐标); 若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号