(本小题满分12分)
已知函数(
,
),
.
(Ⅰ)证明:当时,对于任意不相等的两个正实数
、
,均有
成立;
(Ⅱ)记,
(ⅰ)若在
上单调递增,求实数
的取值范围;
(ⅱ)证明:.
选修4—5:不等式选讲
已知函数,
.
(Ⅰ)当时,求不等式
的解集;
(Ⅱ)设,且当
时,
,求a的取值范围.
选修4—4:坐标系与参数方程
坐标系与参数方程在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)射线与圆C的交点为O、P两点,求P点的极坐标.
选修4-1:几何证明选讲
如图所示,圆的两弦
和
交于点
,
∥
,
交
的延长线于点
,
切圆
于点
.
(1)求证:△∽△
;
(2)如果,求
的长.
)已知函数
(1)若直线过点
,并且与曲线
相切,求直线
的方程;
(2)设函数在
上有且只有一个零点,求
的取值范围。(其中
为自然对数的底数)
已知椭圆C:过点
,且椭圆C的离心率为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若动点P在直线上,过P作直线交椭圆C于M,N两点,且P为线段MN中点,再过P作直线
.证明:直线
恒过定点,并求出该定点的坐标.