((本小题满分14分)
已知圆,点
,点
在圆
运动,
垂直平分线交
于点
.
(Ⅰ)求动点的轨迹
的方程;
(Ⅱ)设是曲线
上的两个不同点,且点
在第一象限,点
在第三象限,若
,
为坐标原点,求直线
的斜率
;
(Ⅲ)过点且斜率为
的动直线
交曲线
于
两点,在
轴上是否存在定点
,使以
为直径的圆恒过这个点?若存在,求出
的坐标,若不存在,说明理由.
某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中
(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?
(2)甲、乙均不能参加,有多少种选法?
(3)甲、乙两人至少有一人参加,有多少种选法?
(4)队中至少有一名内科医生和一名外科医生,有几种选法?
某运输公司有7个车队.每个车队的车都多于4辆且型号相同,要从这7个车队中抽出10辆车组成一运输车队,每个车队至少抽1辆车,则不同抽法有多少种?
6个人进两间屋子,①每屋都进3人;②每屋至少进1人,问:各有多少种分配方法?
从5名女同学和4名男同学中选出4人参加演讲比赛,分别按下列要求,各有多少种不同的选法?
(1)男、女同学各2名;
(2)男、女同学分别至少有1名;
(3)在(2)的前提下,男同学甲与女同学乙不能同时选出.
求20Cn+55=4(n+4)Cn+3n-1+15An+32中n的值.