(本小题满分14分)
已知圆:
,点
,
,点
在圆
上运动,
的垂直平分线交
于点
.
(Ⅰ)求动点的轨迹
的方程;
(Ⅱ)设分别是曲线
上的两个不同点,且点
在第一象限,点
在第三象限,若
,
为坐标原点,求直线
的斜率
;
(Ⅲ)过点,
且斜率为
的动直线
交曲线
于
两点,在
轴上是否存在定点
,使以
为直径的圆恒过这个点?若存在,求出
的坐标,若不存在,说明理由.
已知曲线的极坐标方程为
,曲线
的参数方程为
(
为参数).
(Ⅰ)求曲线的直角坐标方程和曲线
的方程为普通方程;
(Ⅱ)若上的点
的极坐标为
,
为
上的动点,求
中点
到直线
(
为参数)距离的最小值.
已知外接圆劣弧
上的点(不与点
、
重合),延长
交
的延长线于
.
(Ⅰ)求证:;
(Ⅱ)求证:.
已知函数,
,其中
且
.
为自然对数的底数.
(Ⅰ)当时,求函数
的单调区间和极小值;
(Ⅱ)当时,若函数
存在
三个零点,且
,试证明:
;
已知椭圆:
经过点
,且焦点与双曲线
的焦点相同.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点而不过点
的动直线
交椭圆
于
两点,证明:
.
如图,为矩形,
为梯形,平面
平面
,
,
.
(Ⅰ)若为
中点,求证:
∥平面
;
(Ⅱ)求平面与
所成锐二面角的大小.