如图,在四棱锥P—ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB//DC,∠BCD=90°,E为棱PC上异于C的一点,DE⊥BE
(1)证明:E为PC的中点;
(2)求二面角P—DE—A的大小
(本题满分16分)已知圆O: ,圆C:
,由两圆外一点
引两圆切线PA、PB,切点分别为A、B,满足|PA|="|PB|." (1)求实数a、b间满足的等量关系;(2)求切线长|PA|的最小值;(3)是否存在以P为圆心的圆,使它与圆O相内切并且与圆C相外切?若存在,求出圆P的方程;若不存在,说明理由.
(本题满分13分)已知函数:,其中:
,且
,记函数
满足条件:
的事件为A,求事件A发生的概率。
已知函数(n∈N+),且y=f(x)的图象经过点(1,n2),数列{an}(n∈N+)为等差数列.(1)求数列{ an}的通项公式;
(2)当n为奇函数时,设,是否存在自然数m和M,使不等式m<
<M恒成立,若存在,求出M-m的最小值;若不存在,说明理由.
、
是椭圆
的左、右焦点,
是椭圆的右准线,点
,过点
的直线交椭圆于
、
两点.(1)当
时,求
的面积;(2)当
时,求
的大小;(3)求
的最大值.
(本小题满分12分)如图,已知直三棱柱ABC—A1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中点. (Ⅰ)求异面直线AB和C1D所成的角(用反三角函数表示);(Ⅱ)若E为AB上一点,试确定点E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的条件下,求点D到平面B1C1E的距离.