((本小题12分)
经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-
|t-10|.
(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;
(2)求该种商品的日销售额y的最大值与最小值.
某售货员负责在甲、乙、丙三个柜面上售货.如果在某一小时内各柜面不需要售货员照顾的概率分别为0.9,0.8,0.7.假定各个柜面是否需要照顾相互之间没有影响,求在这个小时内:
(1)只有丙柜面需要售货员照顾的概率;
(2)三个柜面最多有一个需要售货员照顾的概率;
(3)三个柜面至少有一个需要售货员照顾的概率.
从10个元件中(其中4个相同的甲品牌元件和6个相同的乙品牌元件)随机选出3个参加某种性能测试. 每个甲品牌元件能通过测试的概率均为,每个乙品牌元件能通过测试的概率均为
.试求:
(I)选出的3个元件中,至少有一个甲品牌元件的概率;
(II)若选出的三个元件均为乙品牌元件,现对它们进行性能测试,求至少有两个乙品牌元件同时通过测试的概率.
袋里装有30个球,每个球上都记有1到30的一个号码, 设号码为的球的重量为
(克). 这些球以等可能性(不受重量, 号码的影响)从袋里取出.
(Ⅰ)如果任意取出1球, 求其号码是3的倍数的概率.
(Ⅱ)如果任意取出1球, 求重量不大于号其码的概率;
(Ⅲ)如果同时任意取出2球, 试求它们重量相同的概率.
(本小题满分12分)在△ABC中,BC=2,
,
.
(Ⅰ)求AB的值;w.w.(Ⅱ)求的值.
(本小题满分14分)已知中心在原点、焦点在x轴的椭圆的离心率为,且过点(
,
). (Ⅰ)求椭圆E的方程;(Ⅱ)若A,B是椭圆E的左、右顶点,直线
:
(
)与椭圆E交于
、
两点,证明直线
与直线
的交点在垂直于
轴的定直线上,并求出该直线方程.