(1)如图①,若∠B+∠D=∠BED,试猜想AB与CD的位置关系,并说明理由。
(2)如图②,要想得到AB∥CD,则∠1、∠2、∠3之间应满足怎样的位置关系?请探索。
我市于2021年5月 日在遂宁观音湖举行了“龙舟赛”,吸引了全国各地选手参加.现对某校初中1000名学生就“比赛规则”的了解程度进行了抽样调查(参与调查的同学只能选择其中一项),并将调查结果绘制出两幅不完整的统计图表,请根据统计图表回答下列问题:
类别 |
频数 |
频率 |
不了解 |
10 |
|
了解很少 |
16 |
0.32 |
基本了解 |
|
|
很了解 |
4 |
|
合计 |
|
1 |
(1)根据以上信息可知: , , , ;
(2)补全条形统计图;
(3)估计该校1000名初中学生中“基本了解”的人数约有 人;
(4)“很了解”的4名学生是三男一女,现从这4人中随机抽取两人去参加全市举办的“龙舟赛”知识竞赛,请用画树状图或列表的方法说明,抽到两名学生均为男生和抽到一男一女的概率是否相同.
如图,在 中,对角线 与 相交于点 ,过点 的直线 与 、 的延长线分别交于点 、 .
(1)求证: ;
(2)请再添加一个条件,使四边形 是菱形,并说明理由.
先化简,再求值: ,其中 是已知两边分别为2和3的三角形的第三边长,且 是整数.
计算: .
如图,已知抛物线 与 轴交于点 和 ,与 轴交于点 ,对称轴为直线 .
(1)求抛物线的解析式;
(2)如图1,若点 是线段 上的一个动点(不与点 , 重合),过点 作 轴的平行线交抛物线于点 ,连接 ,当线段 长度最大时,判断四边形 的形状并说明理由;
(3)如图2,在(2)的条件下, 是 的中点,过点 的直线与抛物线交于点 ,且 .在 轴上是否存在点 ,得 为等腰三角形?若存在,求点 的坐标;若不存在,请说明理由.