((本小题满分12分)
已知x>,函数f(x)=
,h(x)=2e lnx(e为自然常数).
(Ⅰ)求证:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.
己知在锐角ΔABC中,角所对的边分别为
,且
(I )求角大小;
(II)当时,求
的取值范围.
(本小题满分10分)选修4-5:不等式选讲
设(
).
(Ⅰ)当时,求函数
的定义域;
(Ⅱ)若当,
恒成立,求实数
的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程
如图,已知点,
,圆
是以
为直径的圆,直线
:
(为参数).
(Ⅰ)写出圆的普通方程并选取适当的参数改写为参数方程;
(Ⅱ)过原点作直线
的垂线,垂足为
,若动点
满足
,当
变化时,求点
轨迹的参数方程,并指出它是什么曲线.
(本小题满分10分)选修4-1:几何证明选讲
如图,已知与圆
相切于点
,半径
,
交
于点
.
(Ⅰ)求证:;
(Ⅱ)若圆的半径为3,
,求
的长度.
(本小题满分12分)
已知函数,
.依次在
处取到极值.
(Ⅰ)求的取值范围;
(Ⅱ)若成等差数列,求
的值.