(本小题满分12分)
某中学研究性学习小组,为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了 50名学生.调査结果表明:在爱看课外书的25人中有18人作文水平好,另7人作文水平一般;在不爱看课外书的25人中有6人作文水平好,另19人作文水平一般.
(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系?
高中学生的作文水平与爱看课外书的2×2列联表
|
爱看课外书 |
不爱看课外书 |
总计 |
作文水平![]() |
|
|
|
作文水平一般 |
|
|
|
总计 |
|
|
|
(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为1、2、3、4、5,某5名爱看课外书且作文水平一般的学生也分别编号为1、2、3、4、5,从这两组学生中各任选1人进行学习交流,求被选取的两名学生的编号之和为3的倍数或4的倍数的概率.
参考公式:,其中
.
参考数据:
![]() |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828![]() |
某高中有高级教师96人,中级教师144人,初级教师48人,为了进一步推进高中课程改革,邀请甲、乙、丙、丁四位专家到校指导。学校计划从所有教师中采用分层抽样办法选取6名教师分别与专家一对一交流,选出的6名教师再由专家随机抽取教师进行教学调研。
(1)求应从高级教师、中级教师、初级教师中分别抽取几人;
(2)若甲专家选取了两名教师,这两名教师分别是高级教师和中级教师的概率;
(3)若每位专家只抽一名教师,每位教师只与其中一位专家交流,求高级教师恰有一人被抽到的概率。
有A、B、C、D、E五位工人参加技能竞赛培训.现分别从A、B二人在培训期间参加的若干次预赛成绩中随机抽取8次.
用右侧茎叶图表示这两组数据:
(1)A、B二人预赛成绩的中位数分别是多少?
(2)现要从A、B中选派一人参加技能竞赛,从平均状况和方差的角度考虑,你认为派哪位工人参加合 适?请说明理由;
(3)若从参加培训的5位工人中选2人参加技能竞赛,求A、B二人中至少有一人参加技能竞赛的概率.
已知,设
.
(1)求函数的最小正周期,并写出
的减区间;
(2)当时,求函数
的最大值及最小值.
如图,在平面直角坐标系中,以
轴为始边作两个锐角
,它们的终边分别交单位圆于
两点.已知
两点的横坐标分别是
,
.
(1)求的值;
(2)求的值.
设为奇函数,
为常数.
(1)求的值;
(2)证明在区间(1,+∞)内单调递增;
(3)若对于区间[3,4]上的每一个的值,不等式
>
恒成立,求实数
的取值范围.