.甲、乙两人同时参加奥运志愿者的选拔赛,已知在备选的10道题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.(1)求甲答对试题数的分布列及数学期望;(2)求甲、乙两人至少有一人入选的概率.
设函数. (1)求曲线在点处的切线方程; (2)若函数在区间内单调递增,求的取值范围.
已知函数在与时都取得极值, 求函数在的最值.
设数列的前项和为,对一切,点都在函数图像上,设为数列的前项积,是否存在实数,使得对一切都成立?若存在,求出的范围,若不存在,请说明理由
已知为锐角△的外心, 若=+,且,求的值.
正△内有一点,使∠,∠,问能否构成三角形
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号