(本小题满分10分)
在中,
分别为角
所对的三边,已知
.
(Ⅰ)求角的值;
(Ⅱ)若,
,求
的长.
(本小题满分14分)
已知函数.
(Ⅰ)若函数在定义域内为增函数,求实数
的取值范围;
(Ⅱ)当时,试判断
与
的大小关系,并证明你的结论;
(Ⅲ) 当且
时,证明:
.
(本小题满分13分)
如图,已知抛物线,过点
作抛物线
的弦
,
.
(Ⅰ)若,证明直线
过定点,并求出定点的坐标;
(Ⅱ)假设直线过点
,请问是否存在以
为底边的等腰三角形
? 若存在,求出
的个数?如果不存在,请说明理由.
(本小题满分12分)
如图,在四棱锥中,底面
是矩形,
平面
,
,
,
是线段
上的点,
是线段
上的点,且
(Ⅰ)当时,证明
平面
;
(Ⅱ)是否存在实数,使异面直线
与
所成的角为
?若存在,试求出
的值;若不存在,请说明理由.
(本小题满分12分)
已知数列,
满足:
,当
时,
;对于任意的正整数
,
.设数列
的前
项和为
.
(Ⅰ)计算、
,并求数列
的通项公式;
(Ⅱ)求满足的正整数
的集合.