(本小题满分12分)
某超市为了响应环保要求,鼓励顾客自带购物袋到超市购物,采取了如下措施:对不使用超市塑料购物袋的顾客,超市给予0.96折优惠;对需要超市塑料购物袋的顾客,既要付购买费,也不享受折扣优惠.假设该超市在某个时段内购物的人数为36人,其中有12位顾客自己带了购物袋,现从这36人中随机抽取2人.
(Ⅰ)求这2人都享受折扣优惠或都不享受折扣优惠的概率;
(Ⅱ)设这2人中享受折扣优惠的人数为,求
的分布列和数学期望.
已知向量a=(2,﹣1),b=(3,﹣2)求(3a-b)(a-2b)
在△ABC中,已知a=2,b=,c=
+1,求A
在平面直角坐标系xOy中,曲线y=x-6x+1与坐标轴的交点都在圆C上.
(Ⅰ)求圆C的方程;
(Ⅱ)试判断是否存在斜率为1的直线,使其与圆C交于A, B两点,且OA⊥OB,若存在,求出该直线方程,若不存在,请说明理由.
已知数列的前n项和为
,且
=-n
+20n,n∈N
.
(Ⅰ)求通项;
(Ⅱ)设是首项为1,公比为3的等比数列,求数列
的通项公式及其前n项和
.
已知O为平面直角坐标系的原点,过点M(-2,0)的直线l与圆x+y
=1交于P、Q两点,且
(Ⅰ)求∠PDQ的大小;
(Ⅱ)求直线l的方程.