(本小题满分14分)
已知定义在R上的函数和数列
,当
时,
,其中
均为非零常数.
(Ⅰ)若数列是等差数列,求
的值;
(Ⅱ)令,求数列
的通项公式;
(Ⅲ)若数列为等比数列,求函数
的解析式.
(本小题满分12分)、已知函数(
,
)为偶函数,且函数
图象的两相邻对称轴间的距离为
.
(Ⅰ)求的值;
(Ⅱ)将函数的图象向右平移
个单位后,得到函数
的图象,求
的单调递减区间.
(本小题满分12分)
若为二次函数,-1和3是方程
的两根,
(1)求的解析式;
(2)若在区间上,不等式
有解,求实数m的取值范围。
(本小题满分12分)
已知,
,而非P是非q的必要条件,但不是充分条件,求实数m的取值范围。
(12分)设函数为奇函数,且
,数列
与
满足如下关系:
(1)求的解析式;
(2)求数列的通项公式
;
(3)记为数列
的前
项和,求证:对任意的
有
(12分)
已知函数(其中
是自然对数的底数,
为正数)
(I)若在
处取得极值,且
是
的一个零点,求
的值;
(II)若,求
在区间
上的最大值;
(III)设函数在区间
上是减函数,求
的取值范围.