( 为赢得2010年广州亚运会的商机,某商家最近进行了新科技产品的市场分析,调查显示,新产品每件成本9万元,售价为30万元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:万元,
)的平方成正比,已知商品单价降低2万元时,一星期多卖出24件.(1)将一个星期的商品销售利润表示成
的函数;
(2)如何定价才能使一个星期的商品销售利润最大?
已知函数
(1)若为奇函数,求实数
的值;
(2)当时,求函数
在
上的值域;
(3)若对
恒成立,求实数
的取值范围.
在中,角
的对边分别是
,若
(1)求角;
(2)若,
,求
的面积
.
甲、乙两位学生参加数学竞赛培训,他们在培训期间8次模拟考试的成绩如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
画出甲、乙两位学生成绩的茎叶图,求学生甲的中位数
(2)并求学生乙成绩的平均数和方差;
(3)从甲同学超过80分的6个成绩中任取两个,求这两个成绩中至少有一个超过90分的概率.
如图,在四棱锥中,平面
平面
,
∥
是正三角形,已知
(1)设是
上的一点,求证:平面
平面
;
(2)求四棱锥的体积.
已知公差不为0的等差数列的前
项和为
,若
,且
成等比数列
(1)求的通项公式;
(2)设,求数列
的前
项和为
.