游客
题文

(本小题满分13分)
甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:
(Ⅰ)打满3局比赛还未停止的概率;
(Ⅱ)比赛停止时已打局数的分布列与期望E.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知AB、CD是两平行平面内的异面线段,AB=,CD=,它们所成的角为.平面的距离为.求证:不论AB、CD在内如何移动,三棱锥的体积不变,并用表示体积.

在1,2,3,…,100中任意取三个数字构成等差数列,有几种不同的排法?

如图,直线分抛物线轴所围图形为面积相等的两部分,求实数的值.

(本题满分18分;第(1)小题4分,第(2)小题6分,第(3)小题8分)
设数列是等差数列,且公差为,若数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.
(1)若,判断该数列是否为“封闭数列”,并说明理由?
(2)设是数列的前项和,若公差,试问:是否存在这样的“封闭数列”,使;若存在,求的通项公式,若不存在,说明理由;
(3)试问:数列为“封闭数列”的充要条件是什么?给出你的结论并加以证明.

(本题满分16分;第(1)小题5分,第(2)小题5分,第(3)小题6分)
为坐标平面上的点,直线为坐标原点)与抛物线交于点(异于).
(1)若对任意,点在抛物线上,试问当为何值时,点在某一圆上,并求出该圆方程
(2)若点在椭圆上,试问:点能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;
(3)对(1)中点所在圆方程,设是圆上两点,且满足,试问:是否存在一个定圆,使直线恒与圆相切.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号