(本小题满分12分)
如图:正在海上A处执行任务的渔政船甲和在B处执行任务的渔政船乙,同时收到同一片海域上一艘渔船丙的求救信号,此时渔船丙在渔政船甲的南偏东40°方向距渔政船甲70km的C处,渔政船乙在渔政船甲的南偏西20°方向的B处,两艘渔政船协调后立即让
渔政船甲向渔船丙所在的位置C处沿直线AC航行前去救援,渔政船乙仍留在B处执行任务,渔政船甲航行30km到达D处时,收到新的指令另有重要任务必须执行,于是立即通知在B处执行任务的渔政船乙前去救援渔船丙(渔政船乙沿直线BC航行前去救援渔船丙),此时B、D两处相距42km,问渔政船乙要航行多少距离才能到达渔船丙所在的位置C处实施营救.
(1)一本300页的书,随机打开一页,求页码在之间的概率。
(2)在区间内的所有实数中,随机地取一个实数
,求实数
的概率
已知的3个顶点为
,
,
(1)求
的值;
(2)求的大小,并判断
的形状。
(本小题16分)
首项为正数的数列满足
(I)证明:若为奇数,则对一切
都是奇数;
(II)若对一切都有
,求
的取值范围.
中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量(简称血酒含量,单位是毫克/100毫升),当
时,为酒后驾车;当
时,为醉酒驾车 淮安市公安局交通管理部门于2010年6月的一天对某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量,其中查处酒后驾车的有6人,
处醉酒驾车的有4人,依据上述材料回答下列问题:
(1)分别写出违法驾车发生的频率和醉酒驾车占违法驾车总数的百分数;
(2)从违法驾车的10人中抽取4人,求抽取到醉酒驾车人数
的分布列和期望;
(3)饮酒后违法驾驶机动车极易发生交通事故,假设酒后驾车和醉酒驾车发生交通事故的概率分别是0.2和0.5,且每位驾驶员是否发生交通事故是相互独立的,依此计算被查处的10名驾驶员中至少有一人发生交通事故的概率
如图,已知是
底面为正方形的长方体,
,
,点
是
上的动点.
(1)试判断不论点在
上的
任何位置,是否都有平面
垂直于平面
?并证明你的结论;
(2)当为
的中点时,求异面直线
与
所成角的余弦值;
(3)求与平面
所成角的正切值的最大值.