(本小题满分16分)
如图,实线部分的月牙形公园是由圆P上的一段优弧和圆Q上的一段劣弧围成,圆P和圆Q的半径都是2km,点P在圆Q上,现要在公园内建一块顶点都在圆P上的多边形活动场地.
(1)如图甲,要建的活动场地为△RST,求场地的最大面积;
(2)如图乙,要建的活动场地为等腰梯形ABCD,求场地的最大面积.
(本小题满分14分)直线l过点(1,0),与抛物线交于A(x1,y1),B(x2,y2)两点,抛物线的顶点是O.
(ⅰ)证明:为定值;
(ⅱ)若AB中点横坐标为2,求AB的长度及l的方程.
(本小题满分14分)已知命题:“函数
在
上单调递减”,命题
:“
,
”,若命题“
且
”为真命题,
求实数的取值范围。
.(本小题满分14分) 一个口袋内装有大小相同的6个小球,其中2个红球,记为A1、A2,4个黑球,记为B1、B2、B3、B4,从中一次摸出2个球.
(Ⅰ)写出所有的基本事件;
(Ⅱ)求摸出的两个球颜色不同的概率.
(本小题满分14分)已知函数在
与
时都取得极值
(1)求的值;
(2)若对,不等式
恒成立,求
的取值范围
(本小题14分) 已知满足ax·f(x)=2bx+f(x), a≠0, f(1)=1且使
成立的实数x有且只有一个.
(1)求的表达式;
(2)数列满足:
, 证明:
为等比数列.
(3)在(2)的条件下, 若, 求证: