在直角坐标系中,以
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,
分别为曲线
与
轴,
轴的交点.
(1)写出曲线的直角坐标方程,并求出
的极坐标;
(2)设的中点为
,求直线
的极坐标方程.
在中,内角
所对的边分别为
,已知
。
(1)求的长及
的大小;
(2)若,求函数
的值域。
已知函数在[1,+∞)上为增函数, 且
,
,
.
(1)求的值;(2)若
在[1,+∞)上为单调函数,求m的取值范围;
(3)设,若在[1,e]上至少存在一个
,使得
成立,求
的取值范围.
一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:,
,
,
,
,
.
(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
已知函数,且函数
的图象相邻两条对称轴之间的距离为
.
(Ⅰ)求的值;(Ⅱ)若函数
在区间
上单调递增,求k的取值范围.
已知数列为方向向量的直线上,
(I)求数列
的通项公式;(II)求证:
(其中e为自然对数的底数);
(III)记
求证: