(本小题满分12分)
如图所示,在正方体中,E是棱
的中点.
(Ⅰ)求直线BE与平面所成的角的正弦值;
(Ⅱ)在棱上是否存在一点F,使
平面
?证明你的结论.
设函数.
(1)若在
时有极值,求实数
的值和
的极大值;
(2)若在定义域上是增函数,求实数
的取值范围.
已知椭圆C的两焦点分别为,长轴长为6,
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。.
在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1。
(1)请在线段CE上找到一点F,使得直线BF∥平面ACD,并证明;
(2)求平面BCE与平面ACD所成锐二面角的大小;
在数列{}中,
,且
,
(1)求的值;
(2)猜测数列{}的通项公式,并用数学归纳法证明。
已知.
若曲线在
处的切线与直线
平行,求a的值;
当时,求
的单调区间.