(本小题满分12分)
我缉私巡逻艇在一小岛A南偏西50º的方向,距小岛12海里的B处,发现隐藏在小岛边上的一走私船正开始向岛北偏西 10º方向行驶,测得其速度为每小时10海里,问我巡逻艇须用多大的速度朝什么方向航行才能恰在两小时后截获该走私船?(必要时,可参考下列数据sin38º≈0.62,)
如图,已知平面
,
为等边三角形,
(1)若平面平面
,求CD长度;
(2)求直线AB与平面ADE所成角的取值范围.
在中,角A,B,C所对的边分别为a,b,c, 已知a,b,c成等比数列,且
.
(1)求角B的大小;
(2)若,求
的面积最大值.
已知函数
(1)当求
的单调区间;
(2)>1时,求
在区间
上的最小值;
(3)若
使得
成立,求
的范围.
(本小题满分13分)已知抛物线的焦点
以及椭圆
的上、下焦点及左、右顶点均在圆
上.
(1)求抛物线和椭圆
的标准方程;
(2)过点的直线交抛物线
于
、
两不同点,交
轴于点
,已知
为定值.
(本小题满分12分)已知数列的前项
和为
,点
均在函数
的图象上。
(1)求数列的通项公式;
(2)设是数列
的前
项和,求使得
对所有
都成立的实数
的范围.