(已知的值
(本小题满分12分)
如图,已知,
分别是正方形
边
,
的中点,
与
交于点
,
都垂直于平面
,且
,
是
中点.
(Ⅰ)求证:平面平面
;
(Ⅱ)求二面角的余弦值.
(本小题满分12分)
为了普及环保知识,增强环保意识,某校从理科甲班抽取60人,从文科乙班抽取50人参加环保知识测试.
(Ⅰ)根据题目条件完成下面2×2列联表,并据此判断是否有99%的把握认为环保知识成绩优秀与学生的文理分类有关.
优秀人数 |
非优秀人数 |
总计 |
|
甲班 |
|||
乙班 |
30 |
||
总计 |
60 |
(Ⅱ)现已知三人获得优秀的概率分别为
,设随机变量
表示
三人中获得优秀的人数,求
的分布列及期望
.附:
,
![]() |
0.100 |
0.050 |
0.025 |
0.010 |
0.005 |
![]() |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
(本小题满分12分)
在中,角A、B、C的对边分别为a、b、c,面积为S,已知
(Ⅰ)求证:成等差数列;
(Ⅱ)若求
.
(本题满分13分)
设椭圆:
过
,
两点,其中
为椭圆的
离心率,为坐标原点.
(I)求椭圆的方程;
(II)过椭圆右焦点的一条直线
与椭圆交于
两点,若
,求弦
的长.
(本题满分13分)
已知函数.
(I)若函数在
处的切线与
轴平行,求
值;
(II)讨论函数在其定义域内的单调性;
(III)定义:若函数在区间D上任意
都有
,则称函数
是区间D上的凹函数.设函数
,其中
是
的导函数.根据上述定义,判断函数
是否为其定义域内的凹函数,并说明理由.