(本小题满分12分)
已知.
(1)讨论a =" –" 1时,的单调性、极值;
(2)求证:在(1)的条件下,;
(3)是否存在实数a,使的最小值是3,如果存在,求出a的值;若不存在,
请说明理由.
选修4-5:不等式选讲
设函数,
.
(1)求不等式的解集;
(2)设,且
.求证:
.
(本小题满分10分)选修4-4:坐标系与参数方程
已知椭圆C:,直线
(t为参数).
(Ⅰ)写出椭圆C的参数方程及直线的普通方程;
(Ⅱ)设,若椭圆C上的点P满足到点A的距离与其到直线
的距离相等,求点P的坐标.
如图,是△
的外接圆,D是
的中点,BD交AC于E.
(Ⅰ)求证:;
(Ⅱ)若,O到AC的距离为1,求⊙O的半径
(本小题满分12分)已知函数.
(Ⅰ)当时,证明:当
时,
;
(Ⅱ)当时,证明:
.
(本小题满分12分)在平面直角坐标系中,已知椭圆
:
的离心率
,直线
过椭圆
的右焦点
,且交椭圆
于
,
两点.
(1)求椭圆的标准方程;
(2)已知点,连结
,过点
作垂直于
轴的直线
,设直线
与直线
交于点
,试探索当
变化时,是否存在一条定直线
,使得点
恒在直线
上?若存在,请求出直线
的方程;若不存在,请说明理由.