(本小题满分10分)选修4-5:不等式选讲
设函数f(x)=|x-1|+|x-2|.
(Ⅰ)画出函数y=f(x)的图象;
(Ⅱ)若不等式|a+b|-|a-b|≤|a|·f(x)对任意a,b∈R且a≠0恒成立,求实数x的范围
已知向量,
.
(1)若,
,且
,求
;
(2)若,求
的取值范围.
设函数(其中
),
,已知它们在
处有相同的切线.
(1)求函数,
的解析式;
(2)求函数在
上的最小值;
(3)若对恒成立,求实数
的取值范围.
过椭圆的左顶点
作斜率为2的直线,与椭圆的另一个交点为
,与
轴的交点为
,已知
.
(1)求椭圆的离心率;
(2)设动直线与椭圆有且只有一个公共点
,且与直线
相交于点
,若
轴上存在一定点
,使得
,求椭圆的方程.
已知正项数列,其前
项和
满足
且
是
和
的等比中项.
(1)求数列的通项公式;
(2) 符号表示不超过实数
的最大整数,记
,求
.
如图,矩形所在的平面和平面
互相垂直,等腰梯形
中,
∥
,
=2,
,
,
,
分别为
,
的中点,
为底面
的重心.
(1)求证:∥平面
;
(2)求直线与平面
所成角的正弦值.